Course Number and Name

BGE002 – WIND AND SOLAR ENERGY

Credits and Contact Hours

3&45

Course Coordinator's Name

Dr.Shanmuganandh

Text Books and References

TEXTBOOKS:

1. Rai G.D., Non – Conventional sources of energy, Khanna Publications, 4th edition, 2004.

REFERENCES:

- 1. David M. Eggleston and Forrest S.Stoddard, Wind Turbine Engineering Designing Van Noustrand 1987.
- 2. Le Gouries D, Wind Power Plants, Theory and Design Permagon Press, 1982.
- 3. Putnam Palmer C., Power from Wind Van Noustrand, 1984.
- 4. www.global-greenhouse-warming.com/renewable-energy-eBooks.html

Course Description

To equip students with adequate knowledge on the need for alternate energy sources, Potential of solar and wind options

Prerequisites	Co-requisites							
BME	NEW AND RENEWABLE SOURCES OF ENERGY							
required, elective, or selected elective (as per Table 5-1)								

Non Major elective

Course Outcomes (COs)						
CO1	Student learns about modelling of wind rotor					
CO2	Student learns the wind rotor design					
CO3	Student learns the speed control					
CO4	Student learns the use of solar energy in the far future					
CO5	Student learns the installation methods for solar panel					
CO6	Student understands the use of voltaic cell					

Student Outcomes (SOs) from Criterion 3 covered by this Course

	COs/SOs	а	b	с	d	e	f	g	h	i	j	k	1	
	CO1	Н												
	CO2			Н		L				Н		L		
	CO3	Н					М							
	CO4			Н		L		М					L	
	CO5									н				
	CO6	Н				L							L	
Li	ist of Topics	s Cover	ed	1		1	1	1	1	1	1	1	1	

UNIT I WIND ROTOR AND ITS MODELING

Scope of wind power, wind turbine design- Approach elementary aerodynamic models for rotors, Ranking-Fronde actuator disc theory- Wake rotation ,two dimensional air foil theory, Glauert momentum vortex theory-Optimal rotor – Modification, Experimental verification of aero dynamic model.

UNIT II WIND ROTOR DESIGN AND PERFORMANCE ESTIMATION 9

Wind model rotor sizing- Rotor specification, Rotor design – Number of blades, blade design. Performance estimation, sitting economics of wind power.

UNIT III

General requirements, synchronous generators, Induction generators-Squirrel cage-Variable speed-Wound rotor-Resistance controlled-with cyclone converter-practical aspects. Speed control-Stall and Pitch control-Electronic control, power control, Electrical cut-in.

UNIT IV SOLAR ENERGY

Principle of conversion of solar radiation into heat, types of solar thermal collectors-Flat plate and concentrating collectors(parabolic, trough, Minor ,strip, Fresnel lens and compound parabolic concentrator), compression of collectors selective absorber coating, solar thermal power plant.

UNIT V SOLAR ENERGY STORAGE AND APPLICATIONS

Solar energy storage systems-Thermal, Electrical, Chemical, Mechanical and Electro-magnetic, Solar pond. Applications of solar energy-Solar thermo electric conversion-Solar photo voltaic, Solar heating and cooling of buildings, Solar distillation, Solar pumping and terrestrial application. System of solar cell power plantdirect grid connection through electronic control devices.

9

9

9

9